Exercise 3

Verify the Cauchy-Schwarz inequality and the triangle inequality for the vectors in Exercises 3 to 6.

$$
\mathbf{x}=(2,0,-1), \mathbf{y}=(4,0,-2)
$$

Solution

Cauchy-Schwarz Inequality

Check the Cauchy-Schwarz inequality $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$ for the given vectors.

$$
\begin{aligned}
|\mathbf{x} \cdot \mathbf{y}| & =|(2)(4)+(0)(0)+(-1)(-2)|=|10|=10 \\
\|\mathbf{x}\| & =\sqrt{2^{2}+0^{2}+(-1)^{2}}=\sqrt{5} \\
\|\mathbf{y}\| & =\sqrt{4^{2}+0^{2}+(-2)^{2}}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

As a result,

$$
|\mathbf{x} \cdot \mathbf{y}|=\|\mathbf{x}\|\|\mathbf{y}\|=10
$$

which means the Cauchy-Schwarz inequality is satisfied.

Triangle Inequality

Now check the triangle inequality $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for the given vectors.

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & =(2,0,-1)+(4,0,-2)=(6,0,-3) \\
\|\mathbf{x}+\mathbf{y}\| & =\sqrt{6^{2}+0^{2}+(-3)^{2}}=\sqrt{45}=3 \sqrt{5} \\
\|\mathbf{x}\| & =\sqrt{2^{2}+0^{2}+(-1)^{2}}=\sqrt{5} \\
\|\mathbf{y}\| & =\sqrt{4^{2}+0^{2}+(-2)^{2}}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

As a result,

$$
\|\mathbf{x}+\mathbf{y}\|=\|\mathbf{x}\|+\|\mathbf{y}\|=3 \sqrt{5}
$$

which means the triangle inequality is satisfied.

